Категориидисциплины Поискпо сайту

Реферат на тему Использование нейросетей для построения системы распознавания речи скачать бесплатно

Раздел: Информатика, программирование
Тип работы: курсовая работа
Страница 1 из 2 | Следующая страница

Содержание

Введение

1. Распознавание речи – ключевые моменты

2. Возможность использования нейросетей для построения системы распознавания речи

3. Самообучающиеся автономные системы

4. Система распознавания речи как самообучающаяся система

5. Описание системы

5.1 Ввод звука

5.2 Наложение первичных признаков на вход нейросети

5.3 Модель нейросети

5.4 Обучение нейросети

6. Применение

Список использованных источников

Введение

Я думаю, нет смысла рассказывать о том, зачем нужно исследование искусственных нейронных сетей, чем они привлекают исследователей и какие новые возможности они открывают перед разработчиками систем обработки информации - если Вы сейчас читаете эту статью, то Вам итак все ясно. Если же Вы новичок в области нейрокомпьютинга и всего, что с ним связано, то существует огромное количество статей, научных публикаций, учебной литературы, посвященной нейросетям ([1],[5],[6],[8]); написано множество программ, создано множество работающих образцов (от простых исследовательских моделей до полнофункциональных промышленных систем), в которых используются нейросети. В общем, теоретическое исследование нейросетевых алгоритмов ведется уже давно, и на данный момент они уже широко применяются для решения практических задач. В связи с очевидной конкурентоспособностью этого способа обработки информации по сравнению с существующими на сегодняшний момент традиционными способами особый интерес представляет проблема определения круга задач, для которых было бы эффективным применение нейросетевых алгоритмов. Распознавание образов – это одна из задач, успешно решаемых нейросетями. Одним из приложений теории распознавания образов является распознавание речи. Проблема распознавания речи как одно из составляющих искусственного интеллекта давно привлекала исследователей, и на сегодняшний день хоть и достигнуты определенные успехи, она остается открытой. Объединенная с проблемой синтеза речи, она представляет очень интересное поле для исследований.

Попытаться применить нейросетевые алгоритмы на практике, описать и решить возникшие проблемы, а также разработать теорию автономных самообучающихся систем и реализовать её на конкретном примере – вот какие задачи ставились в рамках этой работы.

1. Распознавание речи – ключевые моменты

Что понимается под распознаванием речи? Это может быть преобразование речи в текст, распознавание и выполнение определенных команд, выделение из речи каких либо характеристик (например, идентификация диктора, определение его эмоционального состояния, пола, возраста, и т.д.) – все это в разных источниках может попасть под это определение. В моей работе под распознаванием речи понимается отнесение звуков речи или их последовательности (фонем, букв, слов) к какому-либо классу. Затем этому классу могут быть сопоставлены символы алфавита – получим систему преобразования речи в текст, или определенные действия – получим систему выполнения речевых команд. Вообще этот способ обработки речевой информации может использоваться на первом уровне какой-либо системы с гораздо более сложной структурой. И от эффективности этого классификатора будет зависеть эффективность работы системы в целом.

Какие проблемы возникают при построения системы распознавания речи? Главная особенность речевого сигнала в том, что он очень сильно варьируется по многим параметрам: длительность, темп, высота голоса, искажения, вносимые большой изменчивостью голосового тракта человека, различными эмоциональными состояниями диктора, сильным различием голосов разных людей. Два временных представление звука речи даже для одного и того же человека, записанные в один и тот же момент времени, не будут совпадать. Необходимо искать такие параметры речевого сигнала, которые полностью описывали бы его (т.е. позволяли бы отличить один звук речи от другого), но были бы в какой-то мере инвариантны относительно описанных выше вариаций речи. Полученные таким образом параметры должны затем сравниваться с образцами, причем это должно быть не простое сравнение на совпадение, а поиск наибольшего соответствия. Это вынуждает искать нужную форму расстояния в найденном параметрическом пространстве.

Далее, объем информации, которую может хранить система, не безграничен. Каким образом запомнить практически бесконечное число вариаций речевых сигналов? Очевидно, здесь не обойтись без какой-либо формы статистического усреднения.

Ещё одна проблема – это скорость поиска в базе данных. Чем больше её размер, тем медленнее будет производиться поиск – это утверждение верно, но только для обычных последовательных вычислительных машин. А какие же ещё машины смогут решить все вышеперечисленные проблемы? – спросите Вы. Совершенно верно, это нейросети.

2. Возможность использования нейросетей для построения системы распознавания речи

Классификация - это одна из «любимых» для нейросетей задач. Причем нейросеть может выполнять классификацию даже при обучении без учителя (правда, при этом образующиеся классы не имеют смысла, но ничто не мешает в дальнейшем ассоциировать их с другими классами, представляющими другой тип информации – фактически наделить их смыслом). Любой речевой сигнал можно представить как вектор в каком-либо параметрическом пространстве, затем этот вектор может быть запомнен в нейросети. Одна из моделей нейросети, обучающаяся без учителя – это самоорганизующаяся карта признаков Кохонена. В ней для множества входных сигналов формируется нейронные ансамбли, представляющие эти сигналы. Этот алгоритм обладает способностью к статистическому усреднению, т.е. решается проблема с вариативностью речи. Как и многие другие нейросетевые алгоритмы, он осуществляет параллельную обработку информации, т.е. одновременно работают все нейроны. Тем самым решается проблема со скоростью распознавания – обычно время работы нейросети составляет несколько итераций.

Далее, на основе нейросетей легко строятся иерархические многоуровневые структуры, при этом сохраняется их прозрачность (возможность их раздельного анализа). Так как фактически речь является составной, т.е. разбивается на фразы, слова, буквы, звуки, то и систему распознавания речи логично строить иерархическую.

Наконец, ещё одним важным свойством нейросетей (а на мой взгляд, это самое перспективное их свойство) является гибкость архитектуры. Под этим может быть не совсем точным термином я имею в виду то, что фактически алгоритм работы нейросети определяется её архитектурой. Автоматическое создание алгоритмов – это мечта уже нескольких десятилетий. Но создание алгоритмов на языках программирования пока под силу только человеку. Конечно, созданы специальные языки, позволяющие выполнять автоматическую генерацию алгоритмов, но и они не намного упрощают эту задачу. А в нейросетях генерация нового алгоритма достигается простым изменением её архитектуры. При этом возможно получить совершенно новое решение задачи. Введя корректное правило отбора, определяющее, лучше или хуже новая нейросеть решает задачу, и правила модификации нейросети, можно в конце концов получить нейросеть, которая решит задачу верно. Все нейросетевые модели, объединенные такой парадигмой, образуют множество генетических алгоритмов. При этом очень четко прослеживается связь генетических алгоритмов и эволюционной теории (отсюда и характерные термины: популяция, гены, родители-потомки, скрещивание, мутация). Таким образом, существует возможность создания таких нейросетей, которые не были изучены исследователями или не поддаются аналитическому изучению, но тем не менее успешно решают задачу.

Итак, мы установили, что задача распознавания речи может быть решена при помощи нейросетей, причем они имеют все права на конкуренцию с обычными алгоритмами.

3. Самообучающиеся автономные системы

Чем отличается работа, которую выполняют роботы и которую может выполнить человек? Роботы могут обладать качествами, намного превосходящими возможности людей: высокая точностью, сила, реакция, отсутствие усталости. Но вместе с тем они остаются просто инструментами в руках человека. Существует работа, которая может быть выполнена только человеком и которая не может быть выполнена роботами (или необходимо создавать неоправданно сложных роботов). Главное отличие человека от робота – это способность адаптироваться к изменению обстановки. Конечно, практически у всех роботов существует способность работать в нескольких режимах, обрабатывать исключительные ситуации, но все это изначально закладывается в него человеком. Таким образом, главный недостаток роботов – это отсутствие автономности (требуется контроль человека) и отсутствие адаптации к изменению условий (все возможные ситуации закладываются в него в процессе создания). В связи с этим актуальна проблема создания систем, обладающих такими свойствами.

Один из способов создать автономную систему с возможностью адаптации – это наделить её способностью обучаться. При этом в отличие от обычных роботов, создаваемых с заранее просчитанными свойствами, такие системы будут обладать некоторой долей универсальности.

Попытки создания таких систем предпринимались многими исследователями, в том числе и с использованием нейросетей. Один из примеров – созданный в Киевском Институте кибернетики еще в 70-х годах макет транспортного автономного интегрального робота (ТАИР) (см. [6]). Этот робот обучался находить дорогу на некоторой местности и затем мог использоваться как транспортное средство.

Вот какими свойствами, по моему мнению, должны обладать такие системы:

Разработка системы заключается только в построении её архитектуры.

В процессе создания системы разработчик создает только функциональную часть, но не наполняет (или наполняет в минимальных объемах) систему информацией. Основную часть информации система получает в процессе обучения.

Возможность контроля своих действий с последующей коррекцией

Этот принцип говорит о необходимости обратной связи [Действие]-[Результат]-[Коррекция] в системе. Такие цепочки очень широко распространены в сложных биологических организмах и используются на всех уровнях – от контроля мышечных сокращений на самом низком уровне до управления сложными механизмами поведения.

Возможность накопления знаний об объектах рабочей области

Знание об объекте – это способность манипулировать его образом в памяти т.е. количество знаний об объекте определяется не только набором его свойств, но ещё и информацией о его взаимодействии с другими объектами, поведении при различных воздействиях, нахождении в разных состояниях, и т.д., т.е его поведении во внешнем окружении (например, знание о геометрическом объекте предполагает возможность предсказать вид его перспективной проекции при любом повороте и освещении).

Это свойство наделяет систему возможностью абстрагирования от реальных объектов, т.е. возможностью анализировать объект при его отсутствии, тем самым открывая новые возможности в обучении

Автономность системы

При интеграции комплекса действий, которые система способна совершать, с комплексом датчиков, позволяющих контролировать свои действия и внешнюю среду, наделенная вышеприведенными свойствами система будет способна взаимодействовать с внешним миром на довольно сложном уровне, т.е. адекватно реагировать на изменение внешнего окружения (естественно, если это будет заложено в систему на этапе обучения). Способность корректировать свое поведение в зависимости от внешних условий позволит частично или полностью устранить необходимость контроля извне, т.е. система станет автономной.

4. Система распознавания речи как самообучающаяся система

С целью изучения особенностей самообучающихся систем модели распознавания и синтеза речи были объединены в одну систему, что позволило наделить её некоторыми свойствами самообучающихся систем. Это объединение является одним из ключевых свойств создаваемой модели. Что послужило причиной этого объединения?

Во-первых, у системы присутствует возможность совершать действия (синтез) и анализировать их (распознавание), т.е. свойство (2). Во-вторых, присутствует свойство (1), так как при разработке в систему не закладывается никакая информация, и возможность распознавания и синтеза звуков речи – это результат обучения.

Преимуществом полученной модели является возможность автоматического обучения синтезу. Механизм этого обучения описывается далее.

Ещё одной очень важной особенностью является возможность перевода запоминаемых образов в новое параметрическое пространство с гораздо меньшей размерностью. Эта особенность на данный момент в разрабатываемой системе не реализована и на практике не проверена, но тем не менее я постараюсь кратко изложить её суть на примере распознавания речи.

Предположим, входной сигнал задается вектором первичных признаков в N-мерном пространстве. Для хранения такого сигнала необходимо N элементов. При этом на этапе разработки мы не знаем специфики сигнала или она настолько сложна, что учесть её затруднительно. Это приводит к тому, что представление сигнала, которое мы используем, избыточно. Далее предположим, что у нас есть возможность синтезировать такие же сигналы (т.е. синтезировать речь), но при этом синтезируемый сигнал является функцией вектора параметров в M-мерном пространстве, и M<<N (действительно, число параметров модели синтеза речи намного меньше числа первичных признаков модели распознавания речи). Но тогда мы можем запоминать входной сигнал не по его первичным признакам в N-мерном пространстве, а по параметрам модели синтеза в M-мерном пространстве. Возникает вопрос: а как переводить сигнал из одного параметрического пространства в другое? Есть все основания предполагать, что это преобразование можно осуществить при помощи довольно простой нейросети. Более того, по моему мнению, такой механизм запоминания работает в реальных биологических системах, в частности, у человека.

5. Описание системы

Далее описывается модель автоматического распознавания и синтеза речи. Описывается механизм ввода звука в нейросеть, модель синтеза речи, модель нейросети, проблемы, возникшие при построении модели.

 

5.1 Ввод звука

Ввод звука осуществляется в реальном времени через звуковую карту или через файлы формата Microsoft Wave в кодировке PCM (разрядность 16 бит, частота дискретизации 22050 Гц). Работа с файлами предпочтительней, так как позволяет многократно повторять процессы их обработки нейросетью, что особенно важно при обучении.

Для того, чтобы звук можно было подать на вход нейросети, необходимо осуществить над ним некоторые преобразования. Очевидно, что представление звука во временной форме неэффективно. Оно не отражает характерных особенностей звукового сигнала. Гораздо более информативно спектральное представление речи. Для получения спектра используется набор полосовых фильтров, настроенных на выделение различных частот, или дискретное преобразование Фурье. Затем полученный спектр подвергается различным преобразованиям, например, логарифмическому изменению масштаба (как в пространстве амплитуд, так и в пространстве частот). Это позволяет учесть некоторые особенности речевого сигнала – понижение информативности высокочастотных участков спектра, логарифмическую чувствительность человеческого уха, и т.д.

Как правило, полное описание речевого сигнал только его спектром невозможно. Наряду со спектральной информацией, необходима ещё и информация о динамике речи. Для её получения используются дельта-параметры, представляющие собой производные по времени от основных параметров.

Полученные таким образом параметры речевого сигнала считаются его первичными признаками и представляют сигнал на дальнейших уровнях его обработки.

Процесс ввода звуковой информации изображен на рис. 1:

Рис 1. Ввод звука

При обработке файла по нему перемещается окно ввода, размер которого равен размеру окна дискретного преобразования Фурье (ДПФ). Смещение окна относительно предыдущего положения можно регулировать. В каждом положении окна оно заполняется данными (система работает только со звуком, в котором каждый отсчет кодируется 16 битами). При вводе звука в реальном режиме времени он записывается блоками такого же размера.

После ввода данных в окно перед вычислением ДПФ на него накладывается окно сглаживания Хэмминга:

, (1)

N – размер окна ДПФ

Наложение окна Хэмминга немного понижает контрастность спектра, но позволяет убрать боковые лепестки резких частот (рис 2), при этом особенно хорошо проявляется гармонический состав речи.

без окна сглаживания с окном сглаживания Хэмминга

Рис 2. Действие окна сглаживания Хэмминга (логарифмический масштаб)

После этого вычисляется дискретное преобразование Фурье по алгоритму быстрого преобразования Фурье ([ХХ]). В результате в реальных и мнимых коэффициентах получается амплитудный спектр и информация о фазе. Информация о фазе отбрасывается и вычисляется энергетический спектр:

(2)

Так как обрабатываемые данные не содержат мнимой части, то по свойству ДПФ результат получается симметричным, т.е. E[i] = E[N-i]. Таким образом, размер информативной части спектра NS равен N/2.

Все вычисления в нейросети производятся над числами с

Страница 1 из 2 | Следующая страница

Поделитесь рефератом Использование нейросетей для построения системы распознавания речи

html-cсылка на реферат
BB-cсылка на реферат
Прямая ссылка на реферат

Работы похожие на Использование нейросетей для построения системы распознавания речи

О способах введения «чужой» речи в текст (знаки препинания при прямой речи и цитировании)

Тип работы: реферат

Николенкова Н. В., Болычева Е. М. 
Основное правило: чужая речь может вводится в текст двумя способами – на правах прямой речи (которая функционирует как самостоятельная конструкция) и на правах компонента Вашего предложения (его главных / второстепенных членов, придаточных частей и т.д.). От того, какой способ выбран, зависит употребление знаков препинания и строчных / заглавных букв.
Чужие слова введены как прямая речь Особенности оформления прямой речи достаточно по

Коррекционная работа по совершенствованию грамматического строя речи учеников 7-х классов школы для детей с тяжелыми нарушениями речи.

Тип работы: реферат

Министерство образования Республики Беларусь
Учреждение образования
«Белорусский государственный педагогический университет имени Максима Танка»
Факультет специального образования
Кафедра логопедии
Допущено к защите
Зав. кафедрой____________ Н. Н. Баль
писок использованных источников22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

Лингвистические основы формирования развития письменной речи в связи с развитием речи учащихся 5–6 классов дагестанской национальной школы

Тип работы: дипломная работа

Оглавление

 

Введение

Глава I Лингвистические основы формирования письменной речи в связи с развитием речи учащихся 5-6 классов дагестанской национальной школы

1.1 Лингвистический аспект формирования письменной речи в процессе обучения русскому языку

1.2 Взаимосвязь устной и письменной речи в условиях дагестанско-русского двуязычия как основа анализа письменной речи учащихся

Выводы

Глава II Знания, умения и навыки учащихся-дагестанцев по р

Развитие диалогической речи у детей дошкольного возраста с общим недоразвитием речи

Тип работы: дипломная работа

Введение

Проблема развития диалогической речи детей остается одной из актуальных в теории и практике логопедии, поскольку речь, являясь средством общения и орудием мышления, возникает и развивается в процессе общения.

Согласно взглядам отечественных психологов (Л.С. Выготский [9], А.В. Запорожец [40], А.Н. Леонтьев [25], М.И. Лисина [27], С.Я. Рубинштейн [42], А.Г. Рузская [43], Д.Б. Эльконин [47] и др.) общение выступает в качестве одного из основных условий развития ребе

Использование сказкотерапии в развитии связной монологической речи у детей с общим недоразвитием речи 3 уровня

Тип работы: научная работа

Развитие связной монологической речи по средствам сказкотерапии у детей старшего дошкольного возраста с общим недоразвитием речи

Общее недоразвитие речи (ОНР) – системное нарушение речевой сферы у детей с нормальным слухом и первично сохранным интеллектом. У детей данной группы в большей или меньшей степени оказываются нарушенными произношение и различение звуков, словарный запас отстает от нормы, страдают словообразование и словоизменение, связная речь не развита. Выделяют три